Offline Meta Reinforcement Learning

Ron Dorfman

M.Sc student, EE Department Technion - Israel Institute of Technology

Joint work with Prof. Aviv Tamar

Ron Dorfman

How to reach the goal?

What if goal location is unknown, but we have **data** from agents trained to reach **different goals**, all lie on a semi-circle?

Sample possible goal

Pretend goal is correct and plan

- Sample possible goal
- Pretend goal is correct and plan
- Execute, observe evidence and update possible goals

Thompson Sampling

- Sample possible goal
- Pretend goal is correct and plan
- Execute, observe evidence and update possible goals

Is that the optimal thing to do?

Is that the optimal thing to do? No!

Search optimally across semi-circle

Search optimally across semi-circle

O to found goal

Bayes-optimal exploration

- Search optimally across semi-circle
- O to found goal

Can we use collected data to learn Bayes-optimal behavior?

Can we use collected data to learn Bayes-optimal behavior?

Suppose we can.. Why is it important?

Exploration generally requires online data collection.

Exploration generally requires **online** data collection.

Data collection can be expensive/unsafe: Robotics, Healthcare, AD, ...

Levine et. al. (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.

Exploration generally requires **online** data collection.

Data collection can be expensive/unsafe: Robotics, Healthcare, AD, ...

Learn to explore from offline data

Levine et. al. (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.

Reinforcement Learning (RL)

• Markov Decision Process (MDP) $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}).$

- $\mathcal{S}~-$ state space
- \mathcal{A} action space
- $\mathcal{R}~-$ reward function
- \mathcal{P} transition function

• **Goal:** Find *policy* π that maximizes

$$\mathbb{E}\left[\sum_{t=0}^{H}\mathcal{R}(s_t, a_t)\right]$$

• There exists an optimal policy π^* which is Markov, i.e., $\pi^* : S \to A$.

Exploration in RL

How to discover high reward strategies?

How to discover high reward strategies?

No prior information

- UCRL
- E³
- R-max
- Exploration bonuses
- Count-based

• ...

How to discover high reward strategies?

No prior information

- UCRL
- E³
- R-max
- Exploration bonuses
- Count-based
- ...

Efficiently search state space

Regret bounds, PAC bounds, ...

How to discover high reward strategies?

No prior information

- UCRL
- E³
- R-max
- Exploration bonuses
- Count-based
- ...

Efficiently search state space

Regret bounds, PAC bounds, ...

Prior over MDPs

• Bayesian RL

Optimal exploration

- Prior distribution over MDP parameters, $p(\mathcal{R}, \mathcal{P})$.
- **Goal:** Find *policy* π that maximizes

$$\mathbb{E}_{\mathcal{R},\mathcal{P}\sim p(\cdot,\cdot)}\left[\sum_{t=0}^{H}\mathcal{R}(s_t,a_t)\right]$$

- In general, the optimal policy is **history-dependent**.
- Optimally balance exploration-exploitation: An optimal agent takes *actions that reduce its uncertainty, only if such leads to higher rewards.*

- \mathcal{R}, \mathcal{P} are unobserved variables.
- Collect samples:

$$h_{:t} = (s_0, a_0, r_1, s_1, \ldots, r_t, s_t)$$
.

• Maintain *belief*:

$$\begin{split} b_{t+1}(\mathcal{R},\mathcal{P}) &= P(\mathcal{R},\mathcal{P}|h_{:t+1}) \propto P(s_{t+1},r_{t+1}|h_{:t},\mathcal{R},\mathcal{P})b_t(\mathcal{R},\mathcal{P}),\\ b_0(\mathcal{R},\mathcal{P}) &= p(\mathcal{R},\mathcal{P}) \;. \end{split}$$

• **Bayes-optimal policy** is of the form $\pi^*(s, b)$.

Bayes-Adaptive MDP (BAMDP)

• Hyper-state space:

$$\mathcal{S}^+ = \mathcal{S} imes \mathcal{B}$$

• Transition function:

$$\mathcal{P}^{+}(s_{t+1}^{+}|s_{t}^{+},a_{t}) = \underbrace{\mathbb{E}_{b_{t}}\left[\mathcal{P}(s_{t+1}|s_{t},a_{t})\right]}_{\text{state transition}} \underbrace{\delta(b_{t+1} = P(\mathcal{R},\mathcal{P}|h_{:t+1}))}_{\text{belief update}}$$

• Reward function:

$$\mathcal{R}^+(s_t^+, a_t) = \mathbb{E}_{b_t}\left[\mathcal{R}(s_t, a_t)\right]$$

• Maximizing the BRL objective amounts to solving the BAMDP!

Duff (2002). Optimal Learning: Computational Procedures for Bayes-Adaptive Markov Decision Processes.

© Shimon Whiteson, NeurIPS 2019 Deep Reinforcement Learning Workshop.

© Shimon Whiteson, NeurIPS 2019 Deep Reinforcement Learning Workshop.

- Intractable posterior update
- Intractable planning in belief space

Variational Bayes-Adaptive Deep RL (VariBAD)

Approximate using Meta-RL and Variational Inference.

- Train variational autoencoder to approximate belief.
- Train on-policy RL agent, conditioned on belief.

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.

- Given access to train tasks $\mathcal{M}_1, \ldots, \mathcal{M}_N \sim p(\mathcal{M}) = p(\mathcal{R}, \mathcal{P})$.
- Describe MDP M_i with learned latent variable m_i :

$$\mathcal{P}_i(s_{t+1}|s_t, a_t) \approx \mathcal{P}(s_{t+1}|s_t, a_t, m_i)$$
$$\mathcal{R}_i(s_t, a_t) \approx \mathcal{R}(s_t, a_t|m_i)$$

• Infer m_i by interaction with \mathcal{M}_i :

$$p(m_i|\tau_{:t}^i) = \mathbb{P}(m_i|s_0^i, a_0^i, r_1^i, s_1^i, \dots, r_t^i, s_t^i)$$
.

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.

Model trajectories using variational autoencoder.

• Generative model:

$$P(\tau_{:H}^{s,r}|a_{:H-1}) = \int p_{\theta}(m) p_{\theta}(\tau_{:H}^{s,r}|m,a_{:H-1}) dm$$

• Approximate posterior:

$$q_{\phi}(\boldsymbol{m}|\boldsymbol{\tau}_{:t}) = \mathcal{N}(\mu(\boldsymbol{\tau}_{:t}), \boldsymbol{\Sigma}(\boldsymbol{\tau}_{:t}))$$

• Variational lower bound (ELBO):

 $\log P(\tau_{:H}^{s,r}|a_{:H-1}) \geq \mathbb{E}_{\boldsymbol{q}_{\phi}(\boldsymbol{m}|\tau_{:t})} \left[\log p_{\theta}(\tau_{:H}^{s,r}|\boldsymbol{m}, \boldsymbol{a}_{:H-1})\right] - D_{KL}(\boldsymbol{q}_{\phi}(\boldsymbol{m}|\tau_{:t})||p_{\theta}(\boldsymbol{m}))$ $\equiv ELBO_{t}$

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.

Training Procedure

• For i = 1, ..., N: Collect trajectories from \mathcal{M}_i • Optimize $\mathcal{L}_{RL} + \lambda \mathcal{L}_{VAE}$

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.

Training Procedure

• For i = 1, ..., N: Collect trajectories from \mathcal{M}_i • Optimize $\mathcal{L}_{RL} + \lambda \mathcal{L}_{VAE}$

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.

In this work, offline data is entire training histories of RL agents.

• Train VAE using trajectories in data.

• Train VAE using trajectories in data.

- Relabel states:
 - **Q** Run encoder on every partial trajectory $\tau_{:t}$. Obtain $b_t \approx (\mu_t, \Sigma_t)$.
 - **2** Replace each s_t in data with $s_t^+ = (s_t, \mu_t, \Sigma_t)$.

$$\begin{array}{ll} \underline{Ideal} & & & \underline{Reality} \\ r \sim \mathcal{R}^+ = \mathbb{E}_b \mathcal{R} & & & r \sim \mathcal{R}_{\mathcal{M}} \\ s' \sim \mathcal{P}^+ = \mathbb{E}_b \mathcal{P} & & & s' \sim \mathcal{P}_{\mathcal{M}} \end{array}, \mathcal{M} \sim p(\mathcal{M}) \end{array}$$

$$\begin{array}{c} \underline{\text{Ideal}}\\ r \sim \mathcal{R}^{+} = \mathbb{E}_{b}\mathcal{R}\\ \\ \underline{\text{Time}} \quad s' \sim \mathcal{P}^{+} = \mathbb{E}_{b}\mathcal{P}\\ \hline \\ & & & \\ &$$

Conclusion

Any off-policy RL algorithm can be used on the hyper-state tuples in our data.

Conclusion

Any off-policy RL algorithm can be used on the hyper-state tuples in our data.

Is that it?

The MDP Ambiguity Problem

Two different MDPs or a single MDP with rewards at both circles?

The MDP Ambiguity Problem

Two different MDPs or a single MDP with rewards at both circles? Unique problem to the offline Meta-RL setting!

The MDP Ambiguity Problem

Two different MDPs or a single MDP with rewards at both circles?

Unique problem to the offline Meta-RL setting!

During the VAE training

Reward Relabelling

• Problem: For each MDP, different part of state space is visited.

- Problem: For each MDP, different part of state space is visited.
- Make state distribution uniform across MDPs:

• Requires access to \mathcal{R}_i for each \mathcal{M}_i .

Gridworld

		×	
•			

Semi-circle

Illustrative Domains - Performance

Semi-circle - Belief Visualization

MuJoCo Domains

Half-Cheetah-Vel

Ant-Semi-circle

MuJoCo Domains - Performance

Ant-Semi-circle

Ron Dorfman

Online Setting Performance

• Formalized offline Meta-RL as BRL.

- Demonstrated learning an approximately Bayes-optimal policy.
- Sample efficient off-policy RL optimization.