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How to reach the goal?
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What if goal location is unknown, but we have data from
agents trained to reach different goals, all lie on a semi-circle?
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1 Sample possible goal
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1 Sample possible goal
2 Pretend goal is correct and plan
3 Execute, observe evidence and update possible goals

Thompson
Sampling
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Is that the optimal thing to do?
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Is that the optimal thing to do? No!
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1 Search optimally across semi-circle



Ron Dorfman Offline Meta Reinforcement Learning September 25, 2020 5 / 33

1 Search optimally across semi-circle
2 Go to found goal
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1 Search optimally across semi-circle
2 Go to found goal

Bayes-optimal
exploration
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Can we use collected data to learn Bayes-optimal behavior?
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Can we use collected data to learn Bayes-optimal behavior?

Suppose we can.. Why is it important?
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Exploration generally requires online data collection.



Levine et. al. (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.
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Exploration generally requires online data collection.

Data collection can be expensive/unsafe: Robotics, Healthcare, AD, ...
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Exploration generally requires online data collection.

Data collection can be expensive/unsafe: Robotics, Healthcare, AD, ...

Learn to explore from offline data



Reinforcement Learning (RL)

Markov Decision Process (MDP)M = (S,A,R,P).

S − state space

A − action space

R − reward function

P − transition function

Goal: Find policy π that maximizes

E

[
H∑

t=0

R(st ,at )

]
.

There exists an optimal policy π∗ which is Markov, i.e., π∗ : S → A.
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How to discover high reward strategies?

No prior information

UCRL

E3

R-max

Exploration bonuses

Count-based

...

Efficiently search state space

Regret bounds, PAC bounds, ...

Prior over MDPs

Bayesian RL

Optimal exploration



Bayesian RL (BRL)

Prior distribution over MDP parameters, p(R,P).

Goal: Find policy π that maximizes

ER,P∼p(·,·)

[
H∑

t=0

R(st ,at )

]
.

In general, the optimal policy is history-dependent.

Optimally balance exploration-exploitation: An optimal agent takes
actions that reduce its uncertainty, only if such leads to higher rewards.
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BRL as Partially-Observed MDP

R,P are unobserved variables.

Collect samples:
h:t = (s0,a0, r1, s1, . . . , rt , st ) .

Maintain belief :

bt+1(R,P) = P(R,P|h:t+1) ∝ P(st+1, rt+1|h:t ,R,P)bt (R,P),

b0(R,P) = p(R,P) .

Bayes-optimal policy is of the form π∗(s,b).
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Bayes-Adaptive MDP (BAMDP)

Hyper-state space:
S+ = S × B

Transition function:

P+(s+t+1|s
+
t ,at ) = Ebt [P(st+1|st ,at )]︸ ︷︷ ︸

state transition

δ(bt+1 = P(R,P|h:t+1))︸ ︷︷ ︸
belief update

Reward function:
R+(s+t ,at ) = Ebt [R(st ,at )]

Maximizing the BRL objective amounts to solving the BAMDP!

Duff (2002). Optimal Learning: Computational Procedures for Bayes-Adaptive Markov Decision Processes.
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c© Shimon Whiteson, NeurIPS 2019 Deep Reinforcement Learning Workshop.

Intractable posterior update

Intractable planning in belief space



Variational Bayes-Adaptive Deep RL (VariBAD)

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.
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Approximate using Meta-RL and Variational Inference.

Train variational autoencoder to approximate belief.

Train on-policy RL agent, conditioned on belief.



Meta-RL

Given access to train tasksM1, . . . ,MN ∼ p(M) = p(R,P).

Describe MDPMi with learned latent variable mi :

Pi(st+1|st ,at ) ≈ P(st+1|st ,at ,mi)

Ri(st ,at ) ≈ R(st ,at |mi)

Infer mi by interaction withMi :

p(mi|τ i
:t ) = P(mi|si

0,ai
0, r i

1, si
1, . . . , r

i
t , si

t ) .

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.
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Variational Inference

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.
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Model trajectories using variational autoencoder.

Generative model:

P(τ s,r
:H |a:H−1) =

∫
pθ(m)pθ(τ

s,r
:H |m,a:H−1)dm

Approximate posterior:

qφ(m|τ:t ) = N (µ(τ:t ),Σ(τ:t ))

Variational lower bound (ELBO):

log P(τ s,r
:H |a:H−1) ≥ Eqφ(m|τ:t )

[
log pθ(τ

s,r
:H |m,a:H−1)

]
−DKL(qφ(m|τ:t )||pθ(m))

≡ ELBOt



Training Procedure

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.
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1 For i = 1, . . . ,N :
Collect trajectories fromMi

2 Optimize LRL + λLVAE



Training Procedure

Zintgraf et. al. (2020). VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning. ICLR.
Ron Dorfman Offline Meta Reinforcement Learning September 25, 2020 17 / 33

1 For i = 1, . . . ,N :
Collect trajectories fromMi

2 Optimize LRL + λLVAE

Can we use this to solve BRL offline?



Offline Setting

In this work, offline data is entire training histories of RL agents.
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State Relabelling
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Train VAE using trajectories in data.



State Relabelling
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Train VAE using trajectories in data.

Relabel states:

1 Run encoder on every partial trajectory τ:t . Obtain bt ≈ (µt ,Σt ).
2 Replace each st in data with s+t = (st , µt ,Σt ).



Off-policy VariBAD
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Can’t use on-policy RL in offline setting! For off-policy, need tuples (s,a, r, s′)

Ideal

r ∼ R+ = EbR
s′ ∼ P+ = EbP

Reality

r ∼ RM
s′ ∼ PM

,M∼ p(M)
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Can’t use on-policy RL in offline setting! For off-policy, need tuples (s,a, r, s′)

Ideal

r ∼ R+ = EbR
s′ ∼ P+ = EbP

Reality

r ∼ RM
s′ ∼ PM

,M∼ p(M)

Equivalent!



Off-policy VariBAD
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Can’t use on-policy RL in offline setting! For off-policy, need tuples (s,a, r, s′)

Ideal

r ∼ R+ = EbR
s′ ∼ P+ = EbP

Reality

r ∼ RM
s′ ∼ PM

,M∼ p(M)

Proposition

Sample R,P ∼ p(R,P). Collect trajectory according to at ∼ π(·|h:t ),
st+1 ∼ P(·|st ,at ) and rt+1 ∼ R(·|st ,at ). Then,

P(st+1|s0,a0, r1, . . . , st ,at ) = ER,P∼btP(st+1|st ,at ),

P(rt+1|s0,a0, r1, . . . , st ,at ) = ER,P∼btR(rt+1|st ,at ).



Off-policy VariBAD
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Conclusion

Any off-policy RL algorithm can be used
on the hyper-state tuples in our data.
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Conclusion

Any off-policy RL algorithm can be used
on the hyper-state tuples in our data.

Is that it?
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Two different MDPs or a single MDP with rewards at both circles?

Unique problem to the offline Meta-RL setting!

During the VAE training
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Reward Relabelling
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Problem: For each MDP, different part of state space is visited.

Make state distribution uniform across MDPs:

1 Let τ i =
(

si
0,ai

0, r i
1, si

1, . . . , r
i
H , si

H

)
fromMi .

2 Sample randomly i′ 6= i. Relabel rewards:

τ̂ i =
(

si
0,ai

0, r̂ i
1, si

1, . . . , r̂
i
H , si

H

)
where r̂ i

t+1 = Ri′(si
t ,ai

t )

Requires access toRi for eachMi .



Our Method
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Illustrative Domains
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Gridworld Semi-circle



Illustrative Domains - Performance
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Semi-circle
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Semi-circle - Belief Visualization
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MuJoCo Domains
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Half-Cheetah-Vel Ant-Semi-circle



MuJoCo Domains - Performance
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Ant-Semi-circle

Episode 1 Episode 2
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ant_vid_episode1.mp4
Media File (video/mp4)


ant_vid_episode2.mp4
Media File (video/mp4)



Online Setting Performance

Ron Dorfman Offline Meta Reinforcement Learning September 25, 2020 32 / 33



Summary
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Formalized offline Meta-RL as BRL.

Demonstrated learning an approximately Bayes-optimal policy.

Sample efficient off-policy RL optimization.


