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Papers under Discussion

• Recurrent Independent Mechanisms, arxiv

• Object Files and Schemata: Factorizing Declarative and Procedural
Knowledge in Dynamical Systems, arxiv

• A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
(Bengio et. al) (ICLR’20)

• Learning Neural Causal Models from Unknown Interventions (Ke. et. al)

• Learning to Combine Top-Down and Bottom-Up Signals in Recurrent
Neural Networks with Attention over Modules (Mittal. et. al) (ICML’20)
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Outline

• Knowledge Factorization.

• Modularity and Dynamical Systems.

• Programming Languages and Generalization.
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Beyond Performing a “Single” task

“Generalists”: ability to perform many tasks
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Stroop Effect
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Automatic and Controlled Processing
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Data Generating Distribution

Task distribution - Diverse, growing, compositional. 6



Missing from Current Dynamical Systems ?

Figure 1

• Normal neural networks generally put all of these computational
streams together.

• Hard for the model to share information in a dynamic way (maybe
inclined towards either always sharing information or doing it in a
fixed way).
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Systematicity in Copying Task

Figure 2: Copying Example: Two seperate Phases, information phase and
distractor phase.
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Intuitive Physics: Modelling the motion of specific objects

Figure 3: Intuitive Physics Engine and CNNs: Different objects have different
dynamics, as well as subset of objects can share underlying dynamics.
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Systematicity in Starcraft

Figure 4: Starcraft example
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CausalWorld: Causal Structure Learning

(Trauble*, Ahmed*, Goyal, Wuthrich, Bengio, Scholkopf, Bauer, arxiv)
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What has been done to solve these problems ?

Figure 5: RNNs, Graph Neural Networks, Transformers, Slot Based Models
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Need for Out of Distribution Generalization

Learning Agents face non-stationarities. Changes in distribution due to:

• Their actions.

• Actions of other agents.
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Systematic Generalization/Compositional Generalization

• Dynamically recombine existing concepts.

• Even when new combinations have 0 probability under training
distribution.
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Question: How to learn and
then re-compose reusable
computations ?
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Incorrect Knowledge Factorization Leads to Poor Transfer
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Incorrect Knowledge Factorization Leads to Poor Transfer
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High Level Variables are Causal Variables

• High level variables are also causal
variables corresponding to actions,
controllable objects, intentions etc.

• How is raw sensory data mapped to
high level causal variables ?

• How to discover the relationship
between these causal variables ?

• How are actions corresponding to
causal interventions ?

• How do high level causal variables
turn into low level actions and
partial observations ?
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Causality provides us a language
to talk about changes in
distribution.
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Beyond iid: Independent Mechanisms and Small Change Hy-
pothesis

• Independent Causal Mechanisms.

• Small Change Hypothesis: Non-stationarities, changes in distribution,
involve few mechanisms (e.g. the result of a single-variable
intervention).

How can we discover these mechanisms i.e factor knowledge ?
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Independent Mechanisms

p(X1, . . . ,Xn) =
m∏
i=1

p(Xi | PAi ). (1)

• Interventions are feasible if the mechanisms (i.e., causal conditions)
are independent. Changing one conditional p(Xi | PAi ) does not
change other p(Xj | PAj) for (i 6= j), they remain invariant.

• if all PAi are empty, the factors are statistically independent.
(disentanglement as independence).
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Separating Knowledge in Small Re-Usable Pieces

• Mechanisms which can be used combinatorially.

• Mechanisms which are stable versus non-stationary subject to
non-stationarity.

Learning Representations, where change can be localized.
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Recap: Uptil now

• Need to deal with out of distribution changes.

• High Level variables are causal variables.

• Assumptions on the joint distribution of these high level variables.

• Localized changes upon interventions in the space of these high level
variables.
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Missing from Current Dynamical Systems ?

Figure 6

• Normal neural networks generally put all of these computational
streams together.

• Hard for the model to share information in a dynamic way (maybe
inclined towards either always sharing information or doing it in a
fixed way).

24



Why could it help to have separated dynamics?

• Reuse, Recompose, Repurpose.

• Learning independent mechanisms, buys invariance.

• Invariance buys extrapolation.

• Better transfer and continual learning (if a new task shares some
dynamics but not others)

• Makes it easy for the model to keep two processes separate, which
could also make long-term information storage much easier (no
interference).

What form of knowledge representation would support these
goals ?: What kind of assumptions on the joint distribution of
high level variables ?
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Ensemble of Sparingly Interacting Modules
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Desiderata for Learning Independent Mechanisms

• Seeking relevant information: Each Module only attends to
relevant information.

• Capacity: Limiting the capacity of each module.

• Diversity: Diversity among the different modules i.e. capture
different aspects of the world.

• Coherence between different mechanisms: Need to think about
“coherence” between different mechanisms.
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Top Down Competition: Attentive Information Seeking

• The top-down filter not only enhances the target but also suppresses
other stimuli, including the distractors.
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From Attention To Indirection

29



Multiheaded Key Value Attention: Manipulate sets of objects

Figure 7: Linear Projection

Figure 8: Softmax Calculation
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Typed Argument Functions and Generalization

Efficient Credit Assignment: Each mechanism itself can decide what input
it want to operate on.
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Recurrent Independent Mechanisms

• Data Dependent Activation of Mechanisms
• Top Down Activation of Mechanisms

• Coherence between representations of different mechanisms.
• Active Mechanisms communicate with other mechanisms.

• Inactive Mechanisms follow the default dynamics.
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Recurrent Independent Mechanisms
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Experiments: Diagnostic Interventions

• Robustness to Distractors: Ignore Irrelevant Information.

• Event Based Representations: Specialization over temporal
patterns.

• Object Based Representations: Specialize over objects and
generalize over them.
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Specialization over temporal patters: Copying Task
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Specialization over objects and generalize over them

Figure 9: Predicting Movement of Bouncing Balls. The first 15 frames of
ground truth are given (last 6 of those shown) and then the system is rolled out
for the next 15 time steps. We find that RIMs perform better than the LSTMs
(predictions are in black, ground truth in blue). Notice the blurring of LSTM
predictions.
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Specialize over objects and generalize over them

Figure 10: Handling Novel Out-of-Distribution Variations. Here, we study the
performance of our proposed model compared to an LSTM baseline. The first 15
frames of ground truth are fed in and then the system is rolled out for the next
10 time steps. During the rollout phase, RIMs perform better than the LSTMs in
accurately predicting the dynamics of the balls as reflected by the lower Cross
Entropy (CE) [see blue for RIMs, purple for LSTM]. Notice the substantially
better out-of-distribution generalization of RIMs when testing on a different
number of objects than during training.
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Better Robustness to Distractors

Figure 11: An example of the minigrid task.
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Better Robustness to Distractors

Figure 12: Robustness to Novel Distractors:. Left: performance of the
proposed method compared to an LSTM baseline in solving the object picking
task in the presence of distractors. Right: performance of proposed method and
the baseline when novel distractors are added.
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RIMs improve Generalization in Complex Atari Environments

Figure 13: RIMs-PPO relative score improvement over LSTM-PPO baseline
across all Atari games averaged over 3 trials per game. In both cases, PPO was
used with the exact same settings, and the only change is the choice of recurrent
architecture.

40



Summary: Useful Properties of RIMs

• Processing sets of elements rather than fixed-size vectors as ’states’
of the computation.

• Computation is sparse and modular.

• Computation is dynamic rather than static.

• Inputs and outputs of these modules are sets of objects.

• Inputs and outputs are similar to variables in logic and arguments in
programming, in that the attention-driven control flow selects which
actual objects will be fed as input to activated modules.

41



Classes, Objects, and Invariances
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Essential Ingredients for Modelling Structure

• Separating Procedural (schema) and Declarative Knowledge (Object
files).

• Learning object-centric Representation
• Learning event-centric Representation.

• Procedural Knowledge that can be instantiated on different variables.
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Procedural and Declarative Knowledge
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Generic Knowledge on Variables which can be Instantiated
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Intuitive Example of Classes vs. Objects

Figure 14: Starcraft example
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Procedural Knowledge in the form of Schemata

Figure 15: Decomposition of Knowledge into Object Files and Schemata
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Procedural Knowledge in the form of Schemata

Figure 16: Decomposition of Knowledge into Object Files and Schemata
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Proposal to add the “class/object” concept to RIMs

• We can see each RIM as being roughly analogous to a singleton
object since each always has its own unique method and states.

• However, there is no clear way for us to give the same methods to
multiple RIMs even though they have their own states.

• Idea is that we can decouple these by having a smaller set of
parameters which we can learn to flexibly reuse across multiple RIMs.
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Object Files and Schemata’s

Figure 17: Decomposition of Knowledge into Object Files and Schemata
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One Object File and Many Schemata’s

Figure 18: Here, we have a single object file, and that can follow three different
dynamics. We found that our method is able to learn these 3 different modes
once it’s passed an initial phase of uncertainty.
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Many Object Files and Many Schemata’s

Figure 19: Bouncing ball motion: Prediction error comparison of scoff, LSTM,
and RIMs. Given 10 frames of ground truth, the model predicts the rollout over
the next 35 steps. scoff performs better than LSTM and RIMs. 52



Conclusions

• High level variables are causal.

• Distributional Changes due to localized causal interventions.

• Division into Procedural and Declarative Knowledge.
• Procedural Knowledge can be called upon different instances.
• Connections to indirection in Attention.

• Sparse factor graph in the space of high level variables.
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Questions ?
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